??【導讀】“ 第20屆中日韓居住問題國際會議”圓滿落幕。為了更好的分享學術(shù)成果,近期本公眾號將陸續(xù)刊載會議論文。本期刊載的是“第1子專題:裝配式住宅的多類型建筑技術(shù)與居住環(huán)境”中方優(yōu)秀論文,中文摘要及英文全文如下:
??1 前言
??20世紀80年代初期,伴隨著中國城市化建設,為解決住房嚴重短缺而推行的住房商品化改革,國內(nèi)開啟了開放建筑論研究與實踐的時代。清華大學張守儀教授首次將支撐體理論和方法介紹到我國,東南大學鮑家聲教授系統(tǒng)地研究了SAR住宅理論和設計方法,對住宅的標準化、多樣化及其靈活適應性進行了實踐上的探索。
??隨著時代發(fā)展,人民對住房的品質(zhì)和質(zhì)量要求不斷提升,倪虹部長提出“從好房子到好小區(qū),從好小區(qū)到好社區(qū),從好社區(qū)到好城區(qū),讓城市更宜居、更韌性、更智慧”。南京江北新區(qū)人才公寓3號樓基于開放建筑理念和新時代住房發(fā)展需求開展百年住宅設計實踐,以建設產(chǎn)業(yè)化、建筑長壽化、品質(zhì)優(yōu)良化、綠色低碳化為目標,系統(tǒng)整合裝配、綠色、健康、智慧技術(shù),建設新時代建筑示范項目和創(chuàng)新探索面向未來的“好房子”樣板。
??2 項目概況與設計理念
??江北新區(qū)人才公寓面向江北新區(qū)及南京市各類人才提供租賃住宅,3號樓位于小區(qū)西南角,總高度96.45m,地上建筑面積為2.28萬m2,是江蘇省首棟裝配式組合結(jié)構(gòu)居住建筑,先后獲得綠色建筑三星級、健康建筑三星級設計標識。該項目同時被列為2018年度住建部、江蘇省、南京市裝配式建筑示范項目。
??項目以“智慧樹”為理念,將生物概念植入模塊,核心筒猶如一棵智慧樹的主干和根,采暖、供水、供電等系統(tǒng)都集中在核心筒和地下室,各功能房間就像枝干和樹葉,在智能主干的基礎上插入更多智慧單元模塊的可能性。樹干本身的設計具有極大的靈活度,為智慧單元的植入和毛細血管構(gòu)建提供綜合服務和管網(wǎng)智慧接口,所有植入部分都在主干基礎上盡可能實現(xiàn)人工智能。
??項目倡導“共享”的理念,通過高度的集約化與智能化,營造豐富共享業(yè)態(tài)和交流場所,賦予居住空間更多可能性。
??3 科技創(chuàng)新點
??3.1 裝配式技術(shù)體系全面性、系統(tǒng)性應用
??項目全面綜合應用了裝配式建筑四大系統(tǒng),采用裝配式內(nèi)外墻圍護系統(tǒng)、裝配式混合結(jié)構(gòu)系統(tǒng)、裝配式內(nèi)裝技術(shù)、分離式設備管線系統(tǒng),實現(xiàn)了裝配式建筑技術(shù)全面、系統(tǒng)性創(chuàng)新應用,裝配率達80.8%。
??(1)建筑設計
??項目將建筑造型與預制裝配技術(shù)融合創(chuàng)新,按照工業(yè)化建筑“少構(gòu)件、多組合”的思維,采用了標準化規(guī)劃與設計、平面標準化、戶型標準化、立面標準化等設計手法,最大限度地提高效率降低成本,充分發(fā)揮工業(yè)化建造建筑的優(yōu)勢。采用可變建造技術(shù)體系、集成化核心筒設計,利用標準化設計的手法靈活布置戶型,提供多種可能性。
??(2)結(jié)構(gòu)設計
??根據(jù)百年住宅的核心思想,結(jié)構(gòu)設計從全生命周期出發(fā),在結(jié)構(gòu)布置考慮適應使用年限內(nèi)功能的變化,同時用材方面考慮綠色低碳,并保證結(jié)構(gòu)安全性能和主體耐久性。
??(3)裝配化裝修設計
??項目采用裝配化裝修建造體系(CSI體系),從而達到百年住宅建造要求。墻面、頂面、地面裝飾面與主體結(jié)構(gòu)分離,實現(xiàn)可變、可更換;管線系統(tǒng)與主體結(jié)構(gòu)分離實現(xiàn)管線技術(shù)可持續(xù)改造及圍護。
??3.2 裝配式技術(shù)與綠色健康技術(shù)集成應用
??項目實現(xiàn)了預制裝配式技術(shù)與綠色健康建筑技術(shù)整合創(chuàng)新應用,包括:空中花園、保溫隔熱設計、太陽能光伏一體化、地源熱泵、太陽能與空氣源熱泵熱水、雨水回收利用、空氣凈化與直飲水等技術(shù)。整棟建筑太陽能光伏總裝機容量為45kW,有效提升大樓的可再生能源利用率。
??3.3 未來綠色智慧科技住宅
??項目采用科技智慧體系,建立以數(shù)據(jù)為核心,用戶需求為導向的智慧建筑平臺。通過各類智能化系統(tǒng)讓小區(qū)安全性更高、生活更便利、管理更高效,同時更加節(jié)能環(huán)保,提高了小區(qū)的附加值,提升了生活品質(zhì)。
??4 實踐總結(jié)
??南京江北新區(qū)人才公寓3號樓試點項目集成了當下住宅領域的多項領先技術(shù),從設計到建造,實現(xiàn)了百年住宅所提出的各項指標要求和示范性目標。項目不僅為行業(yè)提供了一個可以觀摩、交流和感受的“好房子”樣本,也代表了新時代綠色、低碳、宜居、智慧住宅建設的發(fā)展方向。同時為當前艱難轉(zhuǎn)型的住房市場提供了重要的啟示:品質(zhì)為基,創(chuàng)新為王,方能在高質(zhì)量發(fā)展的道路上行穩(wěn)致遠。
??英文全文
??01
??Introduction
??In the early 1980s, with the urbanization construction in China, the housing commodification reform was implemented to address the severe shortage of housing. This marked the beginning of an era of open architectural research and practice. Focusing on the standardization and diversification issues present in a large number of residential buildings during the early stages of reform and opening-up, Professor Shou-yi ZHANG from Tsinghua University introduced the concept of supporting structure theory and methods to China for the first time in the Journal of Architecture. Professor Jia-Sheng BAO from Southeast University systematically researched SAR residential theories and design methods. He published a monograph titled “Supporting Structure Housing” and conducted practical explorations on the standardization, diversification, and flexible adaptability of residential buildings.
??As the times evolve and society progresses, people’s longing for a better life becomes stronger. The demands for quality and standards in housing continue to rise. Minister Hong NI proposes the concept of “From good houses to good neighborhoods, from good neighborhoods to good communities, from good communities to good urban areas, making cities more livable, resilient, and intelligent.” Based on the concept of open architecture and the development needs of housing in the new era, building 3 of the Talent Apartments in Nanjing Jiangbei New District conducts a century-long residential design practice. With the goals of industrialization, long life span, excellent quality, and green and low-carbon development, the project systematically integrates assembly technology, green technology, health technology, and smart technology. It strives to build a model project for the new era of architecture and an innovative exploration of future-oriented “good houses”.
??02
??Project Profile
??The Talent Apartment project in Jiangbei New District is located in the core area of Nanjing’s Jiangbei New District. It consists of public rental housing and provides leased residences for various talents in Jiangbei New District and across Nanjing city. Building 3 is situated in the southwest corner of the community. It has one underground floor and 28 above-ground floors, with a standard floor height of 3.3 meters from the 7th to the 28th floor. The total height of the building is 96.45 meters, and the total above-ground floor area is 22,800 square meters. The project is designed and constructed in accordance with the requirements of the “Design and Assessment Standard for Long-Life Sustainable Housing”. It is centered around the principles of “green, healthy, smart, long-lasting, and humanistic” design concepts to comprehensively enhance the quality and standard of the project in areas such as the SI building system, longevity performance of the building, excellent quality performance, and green sustainability. It aims to create a high-quality human settlement complex that is green, low-carbon, durable for a century, dynamically updated, and smartly livable throughout its entire lifecycle. It strives to promote the future concept and culture of green and shared living, emphasizing sustainability and the well-being of its residents.
??This project is the first modular composite structure residential building in Jiangsu Province. It has received the designations of three-star green building and three-star healthy building.
??Figure 1: The scenes of Block 1 and Building 3 of the Jiangbei New District Talent Apartments
??03
??Design Concept and Plane Function
??3.1. Design Concept
??The
project takes the concept of the "Smart Tree" and conducts research and
practice on a century-long future technology system. It treats the
building as an "organism" and incorporates biological concepts into
modules. The core shaft is like the trunk and roots of a smart tree,
with heating, water supply, power supply, and other systems centralized
in the core shaft and basement. The functional rooms are like branches
and leaves, with the possibility of inserting more smart unit modules on
the basis of the intelligent trunk. The design of the trunk itself has
great flexibility, providing comprehensive services and intelligent
network interfaces for the implantation and construction of
capillary-like smart units. All implanted parts strive to achieve
artificial intelligence based on the trunk.
??The project advocates the concept of “sharing” and creates a highly intensive and intelligent environment to cultivate diverse shared formats and exchange spaces, providing residential spaces with more possibilities.
??Figure 2: The concept of smart tree and shard design
??3.2. Plane Function
??This project incorporates different types of residential apartments, sky gardens, shared fitness facilities, shared offices, commercial services, and elderly care services into an open vertical space, achieving functional complexity and diversity within the vertical space. Residents can enjoy modern conveniences without leaving the building. The overall architecture is divided into two main areas: floors 1 to 6 consist of shared public spaces, which include a variety of public service formats, maker spaces, and exhibition areas. Floors 7 to 28 offer flexible residential spaces, providing diverse living options for different needs.
??Figure 3: The functional zoning of the public areas on floors 1 to 6 of the building
??04
??Technological Innovation Points
??4.1. The Comprehensive and Systematic Application of Prefabricated Technology
??The
project comprehensively and comprehensively applied the four major
systems of prefabricated construction, including the prefabricated
external and internal wall enclosure system, the prefabricated hybrid
structure system, the prefabricated interior technology, and the
detached equipment pipeline system. This achieved a comprehensive and
systematic innovation application of prefabricated construction
technology, with a prefabrication rate reaching 80.8%.
??4.1.1. Architecture Design
??The
project combines architectural aesthetics with prefabricated assembly
technology, following the concept of “fewer components, more
combinations” in industrialized construction. The architectural facades
are designed with standardized and modular principles, using
standardized basic components for assembly.
??Plan Modular DesignModular design is adopted for the building floor plan, incorporating techniques such as standardized planning and design, standardized floor layouts, standardized unit layouts, and standardized facades. These design approaches maximize efficiency and cost-effectiveness, fully leveraging the advantages of industrialized construction. The high-rise buildings utilize 8 types of unit layouts combined into 4-unit forms, providing necessary conditions for later individualized and standardized design. This approach not only reduces construction costs but also improves unit diversity, as shown in Table 1.
??Table 1: Summary of Unit Layouts
??Modular Facade DesignThe
residential facade adopts industrialized processing techniques, using
standardized GRC (Glass Fiber Reinforced Concrete) module components.
The dimensions of the components are modularized, and they are assembled
in units of two floors, creating a futuristic and prefabricated effect.
The uniform floor height of the residential units enables efficient
quantified production of prefabricated components, facilitating the
rapid implementation of modular construction techniques. This design
also allows for easy disassembly and replacement after a certain period
of use, achieving a variable facade.
??Figure 5: Prefabricated concrete external cladding panels for the north facade and east-west mountain walls
??Adaptive Construction TechnologyAdopt an adaptive construction technology system. Considering the mobility and rental characteristics of the residents, the unit design is based on standardization, modularization, and variability as design principles. The floor plans can be divided and combined. Taking future housing as an example, the basic module for the floor plan axis dimension is set at 7.8m. Various flexible layouts of unit types are arranged around the standardized core. The spatial division of unit types is based on a module of 3, allowing for flexible arrangement using standardized design techniques, providing multiple possibilities.
??Integrated Core DesignUtilize an integrated core design where all vertical pipeline systems (water, electricity, ventilation, fresh air, etc.) for the building are integrated around the core, while only horizontal pipelines are installed within the units. This facilitates the reconfiguration and combination of unit types. At the same time, the width of the core is coordinated with the residential section to ensure the modularity and coordination of the external cladding panels.
??4.1.2. Structural Design
??Long-Life Sustainable Housing Structural DesignThis project is a Long-Life Sustainable Housing. Based on the core principles of a Long-Life Sustainable Housing, the structural design takes into consideration the changes in functionality throughout the entire lifecycle. The material selection prioritizes green and low-carbon options while ensuring structural safety performance and long-term durability. The structural design concept is illustrated in Figure 6.
??Figure 6: Long-Life Sustainable Housing Structural Design Concept
??Compared to residential buildings with a design lifespan of 50 years, parameters need to be adjusted for a hundred-year residential building, as shown in Table 2.
??Table 2: Design parameters for Long-Life Sustainable Housing
??Structural LayoutThe
core shear walls are constructed with cast-in-place reinforced concrete
shear walls. The foundation utilizes a piled raft foundation. The
columns are made of rectangular steel tube concrete columns and
steel-concrete composite columns. The steel beams adopt welded H-shaped
steel beams and are connected using bolted-welded rigid connections in
cantilevered sections. When necessary to achieve “strong column, weak
beam,” measures such as adding welded cover plates and using dog-legged
beam end connections can be taken. H-shaped steel beams are connected to
H-shaped steel beams using bolted-welded rigid connections. Rectangular
steel tube concrete rigid column bases are used.
??Precast Concrete Curtain Wall Panels
??Precast concrete curtain wall panels are used for the north facade and the perimeter structural enclosure of the two side walls. The exterior wall panels are classified into enclosure board systems and decorative board systems based on the functional requirements of the building facade. The enclosure board system can be further divided into whole-panel systems, strip-board systems, and vertical-strip board systems based on the characteristics of the building facade. Typically, the whole-panel system is suitable for panel widths (B) ≤ 6.0m and panel heights ≤ 5.4m; the strip-board system is suitable for panel widths (B) ≤ 9.0m and panel heights ≤ 2.5m; the vertical-strip board system is suitable for panel widths (B) ≤ 2.5m and panel heights ≤ 6.0m.
??Considering the architectural functional requirements, window openings, standardization and modularization, ease of component transportation, rational load distribution, as well as ease of fabrication and installation, the wall panels are arranged and divided, and the whole-panel system is chosen.The connection between the translatable precast concrete curtain wall panel and the main structural steel beam is divided into load-bearing nodes and non-load-bearing nodes. The upper node is a non-load-bearing node, and its connection structure is illustrated in Figure 7, which allows for relative displacement between the upper node of the precast concrete curtain wall panel and the main structure. The lower node is a load-bearing node, and its connection structure is shown in Figure 8. This structure accomplishes the hinged connection between the precast concrete curtain wall panel and the steel beam. Through Navisworks simulation and vibration table experiments conducted by Tongji University, the design expectations were achieved (see Figure 9).
??4.1.3. Assembled Interior Design
??Based on the overall design principles of the residential area, the project adopts a Assembled Interior construction system (CSI system) to meet the requirements of constructing a century-long residence. As shown in Figure 10, the decorative surfaces of the walls, ceilings, and floors are separated from the main structure, allowing for variability and replacement. The pipeline system is also separated from the main structure to enable sustainable remodeling and enclosure of the pipeline technology.
??Figure 10: Comprehensive and systematic innovative application of Assembled Interior technology
??Raised Floor
??By using a raised floor, the arrangement of cables and wires can be changed as needed, reducing the need for embedded conduit systems for comprehensive wiring. Customized modules with foot supports are used to accommodate plumbing and electrical pipes in the raised floor area, and adjustable floor bolts provide strong adaptability to floor deviations ranging from 0 to 50mm.
??Modular Suspended Ceiling
??Prefabricated gypsum board suspended ceilings are utilized, offering both decorative effects and good sound absorption performance.
??Lightweight and Fast-installed Integrated Wall System
??The internal partition walls are constructed using 90mm lightweight calcium silicate composite insulation wall panels, while the walls between units are built with 200mm calcium silicate composite insulation wall panels. These walls meet the requirements for sound insulation and thermal insulation, and the hollow cavities can integrate pipelines, making them easy to replace and maintain.
??Integrated Bathroom
??Integrated bathrooms are employed with a thin floor same-level drainage system. The bathroom floor height is only 150mm, and an integral waterproof chassis is used. With the thin floor same-level side drain, drainage pipes are arranged beneath the raised floor, eliminating height differences with other rooms.
??Integrated Kitchen
??Integrated kitchen modules are adopted, which benefits large-scale industrial production and reduces procurement costs. A standardized cabinet system ensures unified collaboration for various functions such as operation and storage, achieving both functional completeness and aesthetic space.
??4.2. Integrated Application of Modular Technology and Green Health Technology
??The project has achieved integrated innovative application of prefabricated modular technology and green health building technology, including the following technologies: garden in the air, thermal insulation design, integration of solar photovoltaics, ground source heat pumps, solar and air source heat pump hot water systems, rainwater harvesting, air purification, and direct drinking water. The project meets the standards of a three-star green building and a three-star healthy building.
??Figure 11: Garden in the air
??The south elevation of the structure utilizes an industrialized thin-film solar photovoltaic skin (Figure 12) for the GRC exterior walls. The unique facade forms an efficient shading system by taking advantage of the high solar altitude during summer. It reflects most of the sunlight during summer while utilizing the principle of lower solar altitude during winter to introduce a significant amount of sunlight into the interior. The total installed capacity for solar photovoltaics in the entire building is 45kW, effectively enhancing the renewable energy utilization of the building.
??Figure 12: Integrated design of solar photovoltaic power generation
??4.3. Future green, intelligent technology residences
??The project also adopts a technological smart system, establishing an intelligent building platform centered around data and guided by user needs. As shown in Figure 13, the main intelligent systems designed for this project include: intelligent security system, smart home and home alarm system, smart door lock system, building equipment management system, remote meter reading system, environmental sensing system, and data center engineering, among others. Through various intelligent systems, the community’s security is enhanced, daily life becomes more convenient, and management becomes more efficient. At the same time, it improves energy efficiency and environmental protection, increases the added value of the community, and enhances the quality of life.
??Figure 13: Integration of technological smart systems
??Based on the comprehensive application of various intelligent information, it integrates the combination of structure, system, application, management, and optimization. It possesses comprehensive intelligence capabilities of perception, transmission, memory, judgment, and decision-making. It provides people with a secure, efficient, convenient, and sustainable building functional environment.
??05
??Conclusions
??The pilot project of Building 3 in Nanjing Jiangbei New District Talent Apartment integrates multiple leading technologies in the current residential field, achieving the requirements and exemplary goals proposed for century-old residences from design to construction. The project not only provides the industry with a “good house” sample that can be observed, exchanged, and experienced but also represents the development direction of green, low-carbon, livable, and intelligent residential construction in the new era. At the same time, it provides important enlightenment for the current challenging transformation of the housing market: the foundation lies in quality, and innovation is paramount to ensure steady and far-reaching progress on the path of high-quality development.
??References
??Liu Dongwei, Zhou Jingmin. Residential Design and Practice in the Theory of Open Building[M]. Beijing: China Architecture & Building Press, 2021.
??Qin Shan, Liu Dongwei, Wu Zhichao. Integrated Design and Construction of Residential Building Systems in the Sustainable Development Model: Theoretical Methods, System Technology Research and Practice of Century-long Residential Construction in China[J]. Journal of Architecture, 2020, (05): 32-37.
??Zhu Kan, Zhao Xuefei, Pei Xiaoming. Exploration and Practice of High-rise Variable Residential Design: A Case Study of Talent Apartments in Nanjing Jiangbei New Area[J]. Huazhong Architecture, 2020, 38(09): 38-42.
??Liu Zhifeng. Implementing the Scientific Outlook on Development and Constructing Century-long Residences in China[J]. Residential Industry, 2010(5): 15-16.
??本文作者:
??王蘭橋,南京長江都市建筑設計股份有限公司、科研助理、建筑師
??汪 杰,南京長江都市建筑設計股份有限公司,董事長、研究員級高級工程師
??韋 佳,南京長江都市建筑設計股份有限公司,科研部經(jīng)理、研究員級高級建筑師
??趙學斐,南京長江都市建筑設計股份有限公司、副主任工程師、高級工程師
協(xié)會概況
秘書處
專家?guī)?/h1>
- 中國房地產(chǎn)業(yè)協(xié)會第九次會員代表大會勝利召開
- 陳宜明:在中國房地產(chǎn)業(yè)協(xié)會第九次代表大會的當選講話
- 馮俊:順勢而為,積極作為,促進房地產(chǎn)業(yè)高質(zhì)量發(fā)展
- 關(guān)于舉辦中國房地產(chǎn)業(yè)協(xié)會專題講座(第三十九期)的通知
- 關(guān)于2024年7月物業(yè)管理師職業(yè)技能等級認定合格人員的公示
- 關(guān)于召開“高品質(zhì)住房建設與創(chuàng)新運維服務 現(xiàn)場經(jīng)驗交流會”通知
- 中國房協(xié)舉辦學習貫徹黨的二十屆三中全會精神輔導報告會
- 中社部召開全國性行業(yè)協(xié)會商會學習黨的二十屆三中全會精神會議
- 住房城鄉(xiāng)建設領域民事糾紛“總對總”典型調(diào)解案例征集通知